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Algorithmic mapping from criticality to self-organized criticality
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Probabilistic cellular automata are prototypes of nonequilibrium critical phenomena. This class of models
includes among others the directed percolation problem~Domany-Kinzel model! and the dynamical Ising
model. The critical properties of these models are usually obtained by fine tuning one or more control param-
eters as, for instance, the temperature. We present a method for the parallel evolution of the model for all the
values of the control parameter, although its implementation is in general limited to a fixed number of values.
This algorithm facilitates the sketching of phase diagrams and can be useful in deriving the critical properties
of the model. Since the criticality here emerges from the asymptotic distribution of some quantities, without
tuning of parameters, our method is a mapping from a probabilistic cellular automaton with critical behavior to
a self-organized critical model with the same critical properties.@S1063-651X~97!00604-1#

PACS number~s!: 05.50.1q, 64.60.Ht, 64.60.Lx, 05.70.Jk
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I. INTRODUCTION

Recently, several papers@1–5# have appeared discussin
the relations between self-organized criticality~SOC! @6# and
usual critical phenomena. Some of them@5# stress the fact
that one can reformulate classic critical systems~namely,
directed percolation! in a way indistinguishable from SOC
while others@1# focus on the role of the control and ord
parameters.

We started our investigation from the observation@7# that
one can express the problem of directed site and bond
colation@8# in a form reminiscent of the invasion percolatio
process@9# or the Bak-Sneppen self-organized model@10#.
The advantage of this formulation is that the critical value
the percolation probability does not need to be adjusted c
fully, but instead emerges from the probability distribution
a set of continuous variables, while the original model
defined in terms of Boolean variables.

The directed percolation problem can be formulated
terms of probabilistic cellular automata~PCA! @11#. PCA are
very general models that include for instance the kine
Ising model@12#.

In this paper we show how any critical PCA may b
mapped into a SOC model. The mapping is presented c
structively in Sec. II. It can also be considered as a multi
coding technique@13#, particularly adapted to probabilisti
systems~where the usual multisite performs badly!. From a
computational point of view, this algorithm allows a quic
determination of phase diagrams and computation of crit

*Also at INFN and INFM sezione di Firenze; DRECAM-SPEC
CEA Saclay, 91191 Gif-Sur-Yvette Cedex, France. Electronic
dress: bagnoli@dma.unifi.it
†On leave from Facultad de Ciencias, UNAM, Mexico.
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properties. In Sec. III we apply this method to the study
the Domany-Kinzel model of directed percolation and to t
two-dimensional Ising model.

On the other hand, the mapping implies that to each P
corresponds a SOC model defined in a high or infinite
mensional space. This correspondence can give some in
into the nature of the SOC phase, as addressed in Sec
We end with some conclusions and perspectives.

II. THE FRAGMENT METHOD

We deal with probabilistic cellular automata, i.e., discre
models defined on a lattice. Let us consider explicitly t
one-dimensional Boolean case. A configuration at ti
t11 is obtained from the configuration at timet by applying
in parallel a probabilistic rule to each site. The rule is imp
mented on a computer by comparing~pseudo!random num-
bers with a certain number of fixed parameters~probabili-
ties!. One can think of PCA as the evolution of
deterministic discrete system on a random quenched fi
~the set of random numbers!.

For simplicity, we refer to the directed site percolatio
problem in 111 dimensions, where the higherp, the higher
the probability of percolating. In this case one can visual
the random field as the height of a corrugated landscape,
p as the water level. There will be percolation if the water
able to percolate on the corrugated landscape, i.e., if
plane at heightp is not completely blocked~in this directed
model water is forbidden to back-percolate!. For each value
of p, we denote with a 1 the sites that are wet, and with a
those that are dry.

One can stack a set of planes, and let them evolve
parallel. We can read the state of a certain site for all val
of p as a vector of 1’s and 0’s, each component being labe
by p.

-
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55 3971ALGORITHMIC MAPPING FROM CRITICALITY TO . . .
In the initial configuration sites are either wet or dry, i
dependently ofp. Thus, all vectors are either filled with 1’
or with 0’s. Going on with the percolation process, a co
ponentp of the vector at a certain site and timet11 will be
wet if there is at least a wet component at the same he
among its neighbors at timet, and if the height of the random
field at that position is less thanp. One can easily expres
this in computer language. Each component corresponds
bit in a computer word. With words ofn bits, p can assume
the values 0/n,1/n, . . . ,i /n, . . . (n21)/n. The ~bitwise! OR

of the words in the neighborhood gives a 1 for all values of
p for which there is at least one wet neighbor. Given a r
dom numberr in that site, all planes withp.r have the
possibility of percolating. This is expressed in compu
terms by taking a wordR(r ) filled with 0’s up to a fraction
r of bits and then with 1’s, and performing theAND of
R(r ) with the previous word. Iterating this procedure, we g
in the last line of the lattice~say at timeT) a set of partially
filled words. If at timeT a word has the bit numberk equal
to 1, this means that forp5k/n, water would have perco
lated to that site~given the set of random numbers!.

The procedure can be generalized to words of arbitr
length. In the limitn→`, the Boolean vectors become th
characteristic functions of subsets of the unit interval, wh
we call fragments. The manipulation of fragments is not li
ited to this bitwise implementation, as we shall see in
following.

The fragment expressions do not depend explicitly on
control parameterp. The critical value ofp and the critical
scaling law of the order parameter are obtaineda posteriori,
from the distribution of fragments.

Let us now formalize these concepts. For simplicity w
refer to the Domany-Kinzel~DK! model @11#, which is a
simple one-dimensional PCA. We denote withxi

t50,1 the
state of a sitei at time t, i50, . . . ,L21, with L the size of
the lattice. We shall simplifyx85xi

t11, x65xi61
t . All space

index operations are moduloL ~periodic boundary condi-
tions!. The evolution rule may be written as

x85@r,p#~x2 %x1!~@r,q#x2x1 , ~1!

where% represents the exclusiveOR operation~sum modu-
lus two!, ~ the OR operation, and the multiplication~or
`) stands for theAND operation, with the usual priority
rules. The control parametersp andq are fixed, andr5r i

t is
a random number uniformly distributed between 0 and 1,
where@ logical expression# is 1 if logical expressionis true
and 0 otherwise@14,15#.

In the case of directed site percolationp5q, Eq. ~1! can
be rewritten as

x8~p!5@r,p#„x2~p!~x1~p!…, ~2!

where we emphasize the dependence ofx on p.
The fragment approach consists in readingxi

t(p) as the
value of the characteristic function of the fragmentXi

t at p.
The expression@r,p# is the characteristic function of
fragmentR(r )5@r ,1).

Equation~2! in terms of fragments is

X85R~r !~X2~X1!, ~3!
-
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which does not depend onp. The Boolean functionsAND,
OR, XOR, andNOT correspond to the set operations interse
tion, union, symmetric difference, and complement, resp
tively. We shall use the same symbol for Boolean and
operations. The initial configuration is independent ofp; this
means thatXi

0 are either the empty set or the unit interval,
accord withxi

0. Applying the set operations we obtain th
asymptotic fragmentsXi

`.
For a given value ofp, xi

t(p) is 1 if the pointp belongs to
the fragmentXi

t and 0 otherwise. Thus we can obtain th
asymptotic value ofxi

t(p) from the asymptotic fragment
Xi
t, which evolved without an explicit dependence onp. If

some function of thexi
t exhibits a phase transition in corre

spondence with a critical valuepc , this behavior can be
extracted from the asymptotic fragments. For instance,
densityr,

r~p!5
1

L (
i51

L

xi
T~p!, ~4!

is proportional to the number of fragments to which the po
p belongs,

r~p!5
1

L (
i51

L

@pPXi
T#. ~5!

The above procedure can be applied to all probabilis
cellular automata. The practical recipe for the implemen
tion is as follows.

~A! PCA. Express the model as a probabilistic cellul
automaton whose evolution rule only uses Boolean exp
sions, and convert the control parameters (p1 ,p2 , . . . ,pm) to
expressions like@r k,pk#, where pk appears alone on th
right side.

~B! Fragments. Replace the variablesxi
t with fragments

Xi
t#@0,1)m, and substitute@r k,pk# with R(r k) „@r k.pk#

with its complementR̄(r k)…. The initial configurationxi
0 is

replaced byXi
05R(xi

0).
~C! Implementation. Implement the fragments as arrays

bits ~the simplest approach! or as sparse vectors~see later!
and iterate the rule.

~D! Criticality. The asymptotic distribution of fragment
gives the critical properties~control parameters and expo
nents! of the original model.

Let us illustrate separately each of the previous points

A. PCA

The evolution rule is generally expressed by means
transition probabilities. Note, however, that the transiti
probabilities do not completely characterize the problem
the damage spreading transitions@16#, since there are many
ways of actually implementing the probabilistic choices in
computer code. The general approach for deriving a Bool
expression from transition probabilities is to write formal
the future value of the dynamical variable~the spin! as a
function of the spins in the neighborhood and of the tran
tion probabilities converted to random Boolean variabl
i.e., x85 f (x2 ,x1 , . . . ,@r,p1#,@r,p2#, . . . ). Then there
are several ways@18,19# of expressing a Boolean functio
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using a set of standard Boolean operations likeAND, OR,
XOR, and NOT. Clearly, one should expend some effort
reducing the length of the resulting expression. Sometim
~see the Ising model in Sec. III! one has to transform from
@r, f (p)# to something like@ f21(r ),p# ~or more complex
expressions!.

B. Fragments

The method can be applied to any number of paramet
In the case ofm parametersp1 , . . . ,pm the fragments are
subsets of them-dimensional unit hypercube. For instanc
in the general DK model, Eq.~1!, there are two control pa
rameters (p andq) and the fragments are a subset of the u
square. In this way it is possible to draw a sketch of a ph
diagram, in just one simulation.

However, if one is interested in crossing the critical s
face along one line~see the computation of critical exponen
in Sec. II D!, one has to express the parameters as funct
of a single variable, says, and transform the expression
accordingly. For instance, the directed bond percolat
problem corresponds to the curveq5p(22p), which can be
expressed asp5s and q5s(22s). The corresponding ex
pression is

x85@r,s#~x2 %x1!~@12A12r,s#~x2x1!, ~6!

which gives the following fragment expression:

X85R~r !~X2 %X1!~R~12A12r !~X2X1!. ~7!

C. Implementation

The simplest way of implementing a fragment on a co
puter is by means of an array ofn bits and using bitwise
Boolean operations. Generally one uses computer words~32
or 64 bits! for efficiency, but it is possible to use multipl
words to increase the sampling frequency of probability. T
numerical advantage over other multispin approaches@13# is
the use of just one random number for all then simulations.
Referring to ap layer as a cut of the fragment space-tim
configuration with a given value ofp, we see that the layer
at differentp are not independent, since they use the sa
random numbers. The influence of these correlations is
cussed in Sec. II D.

One can increase the sampling frequency around the
gion of interest~for instance the critical region! by appropri-
ately defining the correspondence of the bits with the val
of p. This affects the wayR(r ) is implemented. With the
fragment method it is still possible to perform simulatio
starting from a single site~Grassberger method! keeping
track of nonzero fragments. The method is powerful if o
uses a small interval around the critical point, so that
clusters for variousp are similar. When using two param
eters~sayp andq) one has to implement differently expre
sions like@r,p# ~fill the unit square in thep direction from
r to 1! from @r,q# ~fill the unit square in theq direction
from r to 1!.

The alternative approach in representing fragments c
sists in keeping track of the starting and ending points of
segments that form a one-dimensional fragment. The
proach is very similar to the treatment of sparse matrices
s

rs.
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we call it the sparse fragment method. The rules of comb
ing sparse fragments are more complex than above. On
other hand, in this way one has infinite precision, whi
proves useful in finding the critical behavior, as explained
Sec. II D.

In general a fragment is formed by just one segment if
evolution rule can be expressed using onlyAND and OR,
while for instance theXOR between two overlapping frag
ments causes holes. As an example, the site percolation
Eq. ~2! can be implemented as sparse fragments by con
ering the evolution of the lower extremuma5ai

t of the seg-
ments@a,1# as @20,1,5#

a85max„r ,min~a2 ,a1!…. ~8!

Sometimes the problem can be reformulated withoutXOR

operations. For instance, the bond percolation problem~6!
can be rewritten as@5,20,21#

x85~@r2,p#x2!~~@r1,p#x1! ~9!

with two random numbers per site. The evolution of this ru
can be easily implemented using sparse fragments.

D. Criticality

The critical properties of the original model are obtain
from the asymptotic distribution of fragments. The fragme
method introduces strong correlations amongp layers as also
noted in Ref.@5#. One can exploit these correlations cons
ering differences in thep direction. If the patterns for differ-
ent p layers have similar sizes, the fluctuations cancel o
This happens in general if the rule does not containXOR ~see
Fig. 1!. On the other hand, theXOR generally implies strong

FIG. 1. The densityr vs the control parameterp for the directed
site percolation problem, Eq.~2!. The inset shows a snapshot of th
first 40 segmentsXt, Eq. ~3!, after t time steps. Shown are th
results of one simulation withL5320 andt51000. The resolution
is 480 bits.
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55 3973ALGORITHMIC MAPPING FROM CRITICALITY TO . . .
variations of clusters withp, so that the fluctuations can i
principle be wider than uncorrelated simulations~see, for
instance, Fig. 2!.

A powerful method for the computation of critical qua
tities exploits the scaling relation

m~p,t !5a2b/nm„a1/n~p2pc!1pc ,at… ~10!

numerically solving it for the unknownb, n, andpc . This is
an easy task for the sparse fragments approach, since on
obtainm(p,t) andm(p8,at) with p85a1/n(p2pc)1pc for
each value ofn and pc . For the bit approach one has
compute the value of the exponents andpc so as to make al
data collapse on a single~smooth! curve. This can be per
formed nearpc approximating the curves with polynomia
~or any other fitting function!, and minimizing thex2 of the
regression.

III. APPLICATIONS

In this section we show some results of the fragm
method applied to classical problems: the determination
the phase diagram and critical properties of the Doma
Kinzel model, and the two-dimensional Ising model.

The first example is the one-dimensional directed site p
colation, i.e., the lineq5p of the DK model, Eq.~2!. A
snapshot of part of the asymptotic fragment configuration
shown in Fig. 1, with the plot of the densityr(p). As illus-
trated above, if one computes theXOR dilution @the line
q50 of the DK model, Eq.~1!#, the fragments decompos
into several segments, as shown in the inset of Fig. 2. C
respondingly, the integrated density converges slowly t
smooth curve.

The complete phase diagram of the DK model can

FIG. 2. The densityr vs the control parameterp for the XOR

dilution, Eq.~1!, with q50. The inset shows a snapshot of the fi
40 segmentsXt after t time steps. One simulation hasL5320 and
t51000. The resolution is 480 bits. Notice that the simulation
produces well also the pointp51, for whichr50.
can

t
f
-

r-

is

r-
a

e

obtained in just one simulation by iterating two-dimension
fragments. The plot of the asymptotic densityr(p,q) is
shown in Fig. 3. It compares well with those obtained w
other methods@11,16,17#. From the convergent behavior o
the contour lines, the position (p51/2,q51) of the discon-
tinuous transition for the density is clearly indicated. Ne
the corner (p51,q50) the surface becomes irregular: this
due to the prevalence of theXOR in Eq. ~1!. One can also
investigate the chaotic phase of the DK model by iterat
two fragment configurations with the same random numb
The Hamming distance between two replicas with a giv
value ofp andq is the (p,q) component of the density of th
XOR between the two asymptotic fragment configurations
plot of the resulting Hamming distance is shown in Fig.
Here one can notice a trace of the density phase boun
@near (p50.8,q50)#, due to the critical slowing down.

For the directed site percolation problem we fou
pc50.7055(4),b50.210 65(5),n51.7195(5) for a system
of size 106, in the interval 0.7,p,0.71 for different values
of a51024,2048,4096,8192. The agreement with previo
measurements@8# is satisfactory. Moreover, we want t
stress that these values were obtained with data coming f
simulations of less than 20 min of CPU time on a 150 MH
PC runningLINUX @22#.

As a second application, we consider now the kinetic v
sion of an equilibrium system, the two-dimensional Isi
model with heat bath dynamics@23,24#. In Appendix A we
show how to express the evolution equation of this mode
a totalistic PCA, and how to translate its evolution in fra
ment language. In Fig. 5 we show the plot of the magneti
tion m(p) with respect top5exp(22J) for an Ising model
with reduced interaction constantJ. The transition is well
characterized by plotting the second moment~standard de-
viation! of the magnetization as a function ofp. We found

-

FIG. 3. The contour plot ofr(p,q) of the Domany-Kinzel
model, Eq.~1!, for a lattice ofL52000 sites andt54000. The
resolution is 1283128 bits. White corresponds tor50 and the
contour lines are drawn at 0.1 intervals.
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pc50.17260.002 andb50.1160.002, in good agreemen
with the exact valuespc5(A221)2 andb51/8.

IV. CRITICALITY AND SELF-ORGANIZED CRITICALITY

We have shown how the DK model and the Ising mod
which are PCA with critical behavior, may be mapped in

FIG. 4. The contour plot of the asymptotic value of the distan
between two replicas of the system evolving under the same
ization of the noise. The parameters are those of the previous fig
l,

fragment models with no control parameter, that is, model
that show self-organized criticality~SOC!. It is evident that
the fragment method may be applied to any critical PCA
This result is summarized in the diagram of Fig. 6. The stat
xi
t(p) may be obtained by evolving the PCA with a given
p ~labeled byf p in the diagram! or by building the fragments
Xi
0 and evolving them with the fragment method (F in the

diagram! that does not depend onp. Finally, by probingXi
t

with a p layer, that is, by checking ifXi
t extends down to

p, we recoverxi
t. Although it is easier to think of one-

dimensional fragments, this result is valid for any number o
control parameters.

It is interesting to describe a ‘‘traditional’’ SOC model
with the fragment language, trying to obtain thep layer de-
scription that would make the SOC model correspond to
usual critical model.

e
al-
re.

FIG. 6. The diagram showing the mapping from criticality to
self-organized criticality.
e
FIG. 5. The magnetizationm and the susceptibility Var(m) ~fluctuation of the magnetization! for a two-dimensional Ising model of siz
L51003100, averaging over 10 samples every 1000 time steps after a transient of 10 000 time steps. The resolution is 32 bits.
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55 3975ALGORITHMIC MAPPING FROM CRITICALITY TO . . .
Let us discuss the one-dimensional Bak-Snappen m
@10# with nearest-neighbor interactions. In this model o
starts from an array of real numbersai , i51, . . . ,L, uni-
formly distributed in the unit interval. One looks for th
minimum ofai and replaces it and its nearest neighbors w
newly generated random numbers, again uniformly dist
uted in the unit interval. The system auto-organizes so
the distribution ofai follows a power law~with exponent 1!,
with a nontrivial avalanche distribution. We define now
parallel version of the previous model~which is not very
efficient from a computational point of view!. For the sake of
simplicity, we divide the discussion in two parts: the r
search of the minimum and the actual evolution.

Let us visualize theai as the lower extremum of segmen
~fragments! Xi , and cut the configuration with a line a
heightp. The minimum is localized at sitek, for which there
is only one intersection. It can be expressed using a Boo
variabled i ,k

t ~a Kroneckerd)

d i ,k
t 5~

p
xi
t~p!„

j̀Þ i
xj
t~p!…, ~11!

assuming that the minimum is unique in the continuousp
limit.

The fragmentsXi at and nearest to the minimum are r
placed by segments of random length@R(r )#,

Xi
t115Xi

t
% ~D i21,k

t ~D i ,k
t ~D i11,k

t !„R~r i
t! %Xi

t
…, ~12!

where the fragmentD i ,k
t is completely filled ifd i ,k

t 51 and
completely empty ifD i ,k

t 50. The evolution can be expresse
on ap layer as

xi
t115xi

t
% ~d i21,k

t ~d i ,k
t ~d i11,k

t !~@r i
t,p# %xi

t!. ~13!

Similar but more complex expressions can be found
the invasion percolation process. One can see that in t
‘‘traditional’’ SOC models there are long range space int
actions, and also interactions amongp layers@see Eq.~11!#.
We think that the second ingredient is the most importan
one knows how some quantity like the density varies w
p, it is not difficult to imagine a mechanism that automa
cally reaches the critical point. It is still to be proved that th
is the actual mechanism of SOC. On the other hand, Eq~8!
shows that there exists space andp-local mechanisms tha
can be classified as SOC.

V. CONCLUSIONS

The fragment method can be considered both as a re
for numerical studies of phase diagrams and as a map
from criticality to self-organized criticality. For what con
cerns the first topic, the possibility of having a sketch of t
phase diagram without huge computation resources is us
in determining the position of the critical line. Numeric
applications of the fragment method will be presented
future work. From the theoretical point of view, we thin
that the formalism presented in this work allows a clear ch
acterization of the basic properties of self-organized mod
suggesting analogies between usual critical phenomena
self-organized ones.
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APPENDIX: THE ISING MODEL

Let us start by considering the one-dimensional Is
model. Its reduced Hamiltonian can be written as

H~x!52
J

2 (
i50

L21

s is i11 , ~A1!

wheres i52xi21 andxi50,1. We choose the heat bath d
namics@23,24#, for which the probabilityt(x˜y… of going
from a configurationx to a configurationy that can differ
from x in a certain number$ i k% of sites is

t(x˜y)5
exp„2H~y!…

(8exp„2H~y8!…
, ~A2!

where the sum in the denominator extends over all comb
tions of the differing sitesyi k. This transition probability

does not depend onx and satisfies the detailed balance pr
ciple.

The configurationy is not limited to differ fromx only at
one site: the evolution can be applied in parallel changing
even~or odd! sites. Since the transition probabilities do n
depend on the previous value of the cell, the space-time
tice decouples into two noninteracting sublattices: one w
even sites at even times and odd site at odd times, and
complementary one. By considering only one sublattice,
neighborhood of the one-dimensional Ising model is
same as that of the Domany-Kinzel model. The kinetic Is
model is just a totalistic cellular automaton~without adsorb-
ing states!.

The local transition probabilitiest(xi21 ,xi11→yi) can
be computed from Eq.~A2! considering a difference in jus
one site. They are

t~0,0→1!5p/~11p!, t~0,1→1!51/2,

t~1,0→1!51/2, t~1,1→1!51/~11p!,

with p5exp(22J).
It is convenient to introduce here the totalistic functio

ck that take the value 1 if the sum of the variables in t
neighborhood isk and zero otherwise. An efficient way o
building these functions is described in@19#. For the
Domany-Kinzel neighborhood they are

c05x2~x1 , c15x2 %x1 , c25x2x1 .

The evolution equation for the Ising cellular automaton is

x85@r,p/~11p!#c0~@r,1/2#c1~@r,1/~11p!#c2 .
~A3!
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Before using the fragment method one has to invert
@r, f (p)# „@r. f (p)#… expressions and substitute them w
R„f21(r )…@R̄„f21(r )…#; p-independent expressions lik
@r,1/2# trasform toR(0) or R̄(0) according withr . We
leave them in the equations with the assumption that a
value meansR(0) and a false value meansR̄(0). Wefinally
find that

X85R̄S r

12r DC01@r,1/2#C11RS 12r

r DC2 , ~A4!

where now theCk are fragments.
For the 2D square Ising model with heat bath dynam

the Hamiltonian is

H~x!52
J

2 (
i , j50

L21

s i , js i11,j1s i , js i , j11 ~A5!

with s i , j52xi , j21. The lattice decouples again in two no
interacting sublattices.

Repeating the procedure as above, one has again a
istic cellular automaton. Using the totalistic functionsCk of
four nearest neighbors, we find that
ra

ng
e

e

,

tal-

X85RSA r

12r DC0~RS r

12r DC1~F r,
1

2GC2

~R̄S 12r

r DC3~R̄SA12r

r DC4, ~A6!

wherep5exp(22J).
The Ck functions can be computed efficiently using th

homogeneous polynomialsDj @19#,

C05C1~C2~C3~C4 , C15D1%D3 ,

C25D2%D3 ,C35D3 , C45D4 ,

where

D15X11 %X12 %X21 %X22 ,

D25X11X12 % ~X11 %X12!~X21 %X22! %X21x22 ,

D35D2D1 , D45X11X12X21X22 .
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